Solving equations of motion on a virtual tree machine
نویسندگان
چکیده
The dynamic equations of motion for rigid links connected at hinges to form a tree are amenable to a parallel solution. Such a solution can potentially provide a real-time simulation of the dynamic behavior of a broad class of objects used in animation and robotics even when the number of links is large. However, the design of a parallel algorithm poses problems not encountered in the sequential, one-processor case, such as assignment of links to processes, allocation of processes to physical processors, synchronization of processes, and the reduction of communication losses. The computation time using a parallel algorithm and an unlimited number of processors is shown to grow with the height of the tree rather than with its number of links. Increased communication costs degrade performance by a factor at most equal to the fanout. The facility used to investigate these problems is a Virtual Tree Machine (VTM) multi-computer implemented on a network of autonomous VAX-11/780 computers and SUN-2 workstations, each running a UNIX operating system.‡ Although the VTM is physically connected via a local area network, its performance in this study reflects what would occur in a point-to-point interconnection of processors in a tree configuration which would be much more expensive to build and test.
منابع مشابه
Computational method based on triangular operational matrices for solving nonlinear stochastic differential equations
In this article, a new numerical method based on triangular functions for solving nonlinear stochastic differential equations is presented. For this, the stochastic operational matrix of triangular functions for It^{o} integral are determined. Computation of presented method is very simple and attractive. In addition, convergence analysis and numerical examples that illustrate accuracy and eff...
متن کاملAn Analytical Technique for Solving Nonlinear Oscillators of the Motion of a Rigid Rod Rocking Bock and Tapered Beams
In this paper, a new analytical approach has been presented for solving strongly nonlinear oscillator problems. Iteration perturbation method leads us to high accurate solution. Two different high nonlinear examples are also presented to show the application and accuracy of the presented method. The results are compared with analytical methods and with the numerical solution using Runge-Kutta m...
متن کاملA wavelet method for stochastic Volterra integral equations and its application to general stock model
In this article,we present a wavelet method for solving stochastic Volterra integral equations based on Haar wavelets. First, we approximate all functions involved in the problem by Haar Wavelets then, by substituting the obtained approximations in the problem, using the It^{o} integral formula and collocation points then, the main problem changes into a system of linear or nonlinear equation w...
متن کاملApplication of new basis functions for solving nonlinear stochastic differential equations
This paper presents an approach for solving a nonlinear stochastic differential equations (NSDEs) using a new basis functions (NBFs). These functions and their operational matrices are used for representing matrix form of the NBFs. With using this method in combination with the collocation method, the NSDEs are reduced a stochastic nonlinear system of equations and unknowns. Then, the error ana...
متن کاملHAAR WAVELET AND ADOMAIN DECOMPOSITION METHOD FOR THIRD ORDER PARTIAL DIFFERENTIAL EQUATIONS ARISING IN IMPULSIVE MOTION OF A AT PLATE
We present here, a Haar wavelet method for a class of third order partial dierentialequations (PDEs) arising in impulsive motion of a flat plate. We also, present Adomaindecomposition method to find the analytic solution of such equations. Efficiency andaccuracy have been illustrated by solving numerical examples.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1985